Affiliation:
1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China
Abstract
In order to have a more comprehensive grasp of the performance of the rim-driven thruster, the external characteristics are studied by experiment and carry out numerical simulation to study inner flow characteristics. The test results for the rim-driven thruster find that the head curve had a hump shape. The head is the largest while the flow rate Q = 600 m3/h. The numerical simulation is carried out to reveal the cause of the hump of head. The results show that large-scale backflows gradually appear near the wall in front of the impeller inlet, the central area of the impeller outlet, and the two sides of the central low-pressure zone with the reducing of the flow rate, which can cause a large flow loss and result in a drop in head. The discrepancy between the pressure surface and the suction surface of blade decreases rapidly in the range of r/ R = 0.2–0.5, which is another major factor leading to the drop in head under small-flow conditions. Structurally, there is no blade in the impeller center and there are the large backflows in the middle of impeller, which causes much volume loss and is a main cause of the decreasing of head under small flow rate.
Funder
the National Science Foundation
the second level of scientific research funding for the fifth phase of 333 Project in Jiangsu
Reference16 articles.
1. Gary A, Shahrestani N, Frank D, et al. Propagator 2013: UF autonomous surface vehicle. Association for Unmanned Vehicle Systems International, 2013.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献