Recent developments in adsorption heat pumps for heating applications

Author:

Riaz Nadia1,Sultan Muhammad1ORCID,Noor Shazia12,Sajjad Uzair3,Farooq Muhammad4,Khan Muhammad U5,Hanif Shazia6,Riaz Fahid4ORCID

Affiliation:

1. Department of Agricultural Engineering, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan

2. Department of Mechanical Engineering, Bahauddin Zakariya University, Multan, Pakistan

3. Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, Taiwan

4. Department of Mechanical Engineering (New Campus-KSK), University of Engineering and Technology, Lahore, Pakistan

5. Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan

6. Department of Agricultural Engineering, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan

Abstract

Adsorption heat pumps (AHPs) have gained noticeable attention in recent years. The review discusses significant research in the domain of adsorption heat pumps focusing on heating applications, the working principle, adsorption equilibrium and kinetics, the design of adsorbent beds, physical models, operating parameters, and physical and thermodynamic characteristics of adsorbents. A comparison is presented among AHPs and traditional heating technologies and systems for AHPs that certain market participants have created. The review focuses on the most appropriate conditions for each measurement technique and the constraints of the modeling processes that are an essential element for the comprehensive performance evaluation of adsorption cooling units. For adsorption bed applications, it is suggested to use various bed designs and heat exchanger structures. Moreover, significant literature gaps and constraints in designing AHPs for heating applications are identified and analyzed. The heat and mass transfer resistance should be reduced by developing novel adsorbent materials and an improved interface among the duct wall and the bed, where heat transfer fluid circulates to increase adsorption heat pump system performance. Furthermore, optimum operational modes for the intended application might significantly enhance system performance.

Funder

Bahauddin Zakariya University

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3