A Review of Energy-Efficient Technologies and Decarbonating Solutions for Process Heat in the Food Industry

Author:

Faraldo François12ORCID,Byrne Paul1ORCID

Affiliation:

1. Civil and Mechanical Engineering Laboratory, University of Rennes, 35000 Rennes, France

2. PackGy, Industrial Deeptech Start-Up, 56700 Kervignac, France

Abstract

Heat is involved in many processes in the food industry: drying, dissolving, centrifugation, extraction, cleaning, washing, and cooling. Heat generation encompasses nearly all processes. This review first presents two representative case studies in order to identify which processes rely on the major energy consumption and greenhouse gas (GHG) emissions. Energy-saving and decarbonating potential solutions are explored through a thorough review of technologies employed in refrigeration, heat generation, waste heat recovery, and thermal energy storage. Information from industrial plants is collected to show their performance under real conditions. The replacement of high-GWP (global warming potential) refrigerants by natural fluids in the refrigeration sector acts to lower GHG emissions. Being the greatest consumers, the heat generation technologies are compared using the levelized cost of heat (LCOH). This analysis shows that absorption heat transformers and high-temperature heat pumps are the most interesting technologies from the economic and decarbonation points of view, while waste heat recovery technologies present the shortest payback periods. In all sectors, energy efficiency improvements on components, storage technologies, polygeneration systems, the concept of smart industry, and the penetration of renewable energy sources appear as valuable pathways.

Publisher

MDPI AG

Reference231 articles.

1. Pörtner, H.-O., Roberts, D.C., Poloczanska, E.S., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., and Möller, V. Climate Change 2022—Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK.

2. Olsson, O., and Schipfer, F. (2024, April 30). Decarbonizing Industrial Process Heat: The Role of Biomass. IEA Bioenergy Task 40: IEA Bioenergy Inter-Task Project on Industrial Process Heat. Available online: https://www.ieabioenergy.com/wp-content/uploads/2022/02/Role-of-biomass-in-industrial-heat.pdf.

3. Hodgson, D., Vass, T., Levi, P., Hugues, P., and Industry (2024, April 30). IEA. Available online: https://www.iea.org/reports/industry.

4. (2024, April 30). Eurostat Database: Simplified Energy Balances. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_bal_s/default/table?lang=en.

5. Montforti-Ferrario, F., and Pinedo Pascua, I. (2015). Energy Use in the EU Food Sector: State of Play and Opportunities for Improvement. JRC Science and Policy Report, Publications Office of the European Union.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3