Affiliation:
1. Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Abstract
Heat pumps are recognized as a key tool in the energy transition toward a carbon-neutral society, enabling the electrification of the heating sector at least for low- and medium-temperature heat demands. In recent years, natural refrigerants have been reconsidered due to their low environmental impact: among them, CO2 is a safe option without an impact on the ozone layer and low global warming potential compared to synthetic fluids. However, as a consequence of its thermophysical properties, its thermodynamic cycle is transcritical and is particularly suitable for specific end-user temperature profiles. This paper analyzes in a systematic and thorough way the most significant modifications to the reference cycle that have been proposed in the literature to improve the performance, finding how the optimal configurations change with a change in the rated operating conditions (inlet temperature and temperature glide of the heat demand, and ambient temperature). Exergy analysis explains why there is an optimal gas cooler pressure and why its trend with the average temperature is split into two distinct regions, clearly recognizable in all cycle layouts. The maximum coefficient of performance (COP) of the reference cycle varies in the 1.52–3.74 range, with a second-law efficiency of 6.4–36.1%, for an optimal gas cooler pressure of up to 15.45 MPa, depending on the ambient temperature and end-user temperature profile. The most effective modification is the cycle with an ejector and internal heat exchanger, which raises the COP to 1.84–4.40 (second-law efficiency 8.7–45.56%). The presented results provide an extensive guide to understanding the behavior of a transcritical CO2 cycle and predict its performance in heat pump applications.
Funder
Ministry of Enterprises and Made in Italy
Reference47 articles.
1. International Energy Agency (2022). The Future of Heat Pumps, OECD.
2. Electrification of Transport and Residential Heating Sectors in Support of Renewable Penetration: Scenarios for the Italian Energy System;Bellocchi;Energy,2020
3. Simon, S., Xiao, M., Harpprecht, C., Sasanpour, S., Gardian, H., and Pregger, T. (2022). A Pathway for the German Energy Sector Compatible with a 1.5 °C Carbon Budget. Sustainability, 14.
4. Heat Pumps and Our Low-Carbon Future: A Comprehensive Review;Gaur;Energy Res. Soc. Sci.,2021
5. Faraldo, F., and Byrne, P. (2024). A Review of Energy-Efficient Technologies and Decarbonating Solutions for Process Heat in the Food Industry. Energies, 17.