Effect of data preprocessing methods and hyperparameters on accuracy of ball bearing fault detection based on deep learning

Author:

Kim Dong Wook1,Lee Eun Sung1,Jang Woong Ki2ORCID,Kim Byeong Hee12,Seo Young Ho12

Affiliation:

1. Department of Mechatronics Engineering, Kangwon National University, Chuncheon, Gangwon-do, Korea

2. Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon, Gangwon-do, Korea

Abstract

This paper presents the effect of data preprocessing methods and hyperparameters in deep learning on the accuracy of ball bearing fault detection. In this study, artificial defects in the ball bearing were created to obtain the machine learning data for ball bearing fault detection. Vibration data were acquired by an accelerometer mounted in the bearing housing at three different rotation speeds. The obtained one-dimensional acceleration-based vibration data were changed into five different data forms: one-dimensional fast Fourier transform data, two-dimensional spectrogram image data, etc. One-dimensional numerical data were used as training data in the multi-layer perceptron and two-dimensional image data in the convolutional neural network classifier. After training, the accuracy and effectiveness of the validation test and the training data formats and deep learning models are discussed in this paper. 1D time- and frequency-domain numerical data showed 100% accuracy within the same rotation speed, but the accuracy was down to less than 50% in the mixed rotation speeds. On the other hand, 2D frequency-domain image data presented more than 99% accuracy for the mixed rotation speeds. Among 2D image data, FFT-image data is less sensitive to hyperparameters such as kernel and convolution layer and shows high test accuracy of 99% at least. Consequently, 2D image data format with the convolutional neural network more accurately worked in a complicated situation.

Funder

korea institute for advancement of technology

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3