Intelligent fault diagnosis of machinery based on hybrid deep learning with multi temporal correlation feature fusion

Author:

Lv Yaqiong1,Zhang Xiaohu1,Cheng Yiwei2ORCID,Lee Carman K. M.3

Affiliation:

1. School of Transportation and Logistics Engineering Wuhan University of Technology Wuhan China

2. School of Mechanical Engineering and Electronic Information China University of Geosciences (Wuhan) Wuhan China

3. Department of Industrial and Systems Engineering The Hong Kong Polytechnic University Hung Hom Hong Kong China

Abstract

AbstractWith the advent of intelligent manufacturing era, higher requirements are put forward for the fault diagnosis technology of machinery. The existing data‐driven approaches either rely on specialized empirical knowledge for feature analysis, or adopt single deep neural network topology structure for automatic feature extraction with compromise of certain information loss especially the time‐series information's sacrifice, which both eventually affect the diagnosis accuracy. To address the issue, this paper proposes a novel multi‐temporal correlation feature fusion net (MTCFF‐Net) for intelligent fault diagnosis, which can capture and retain time‐series fault feature information from different dimensions. MTCFF‐Net contains four sub‐networks, which are long and short‐term memory (LSTM) sub‐network, Gramian angular summation field (GASF)‐GhostNet sub‐network and Markov transition field (MTF)‐GhostNet sub‐network and feature fusion sub‐network. Features of different dimensional are extracted through parallel LSTM sub‐network, GASF‐GhostNet sub‐network and MTF‐GhostNet sub‐network, and then fused by feature fusion sub‐network for accurate fault diagnosis. Two fault diagnosis experimental studies on bearings are implemented to validate the effectiveness and generalization of the proposed MTCFF‐Net. Experimental results demonstrate that the proposed model is superior to other comparative approaches.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3