Triple-diffusive free convection enhancement at the stagnation point on moving sheet under the influence of hall effect and mass flux

Author:

Islam Ammara1,Mahmood Zafar1ORCID,Khan Umar1ORCID,Muhammad Taseer2,Hassan Ahmed M3

Affiliation:

1. Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan

2. Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia

3. Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt

Abstract

This study seeks to examine the impact of convective heat transfer, buoyancy ratios, hall current effect, nonlinear thermal radiation, Schmidt number, Prandtl number and mass flux condition on the temperature profiles, velocity profiles and concentration profiles. The research explores into mass and heat transfer characteristics of a stagnation point flow of a free convective triple diffusion with considerations for convective boundary constraints and nonlinear thermal radiation over a mobile vertical plate. To elucidate the aims and methodology, the study utilizes similarity transformation to convert the governing partial differential equations into a set of nonlinear ordinary differential equations. Numerical solutions are obtained employing a fourth-order Runge-Kutta shooting strategy. The findings, showcased through graphical representations, unravel the intricate interplay of parameters, shedding light on flow distribution, temperature, and velocity profiles. These quantitative results not only enhance our scientific understanding of fluid dynamics but also hold practical implications across diverse sectors. Notably, the acquired insights are poised to benefit fields such as environmental science and engineering, where optimizing heat and mass transfer processes is paramount. This research thus contributes valuable perspectives to both the theoretical framework of fluid dynamics and its real-world applications.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3