Numerical study of MHD flow over stretching cylinder with variable Prandtl number and viscous dissipation in ternary hybrid nanofluids with velocity and thermal slip conditions

Author:

Rafique Khadija1ORCID,Mahmood Zafar1ORCID,Usman 23ORCID,Adnan 4ORCID,Farooq Umar5ORCID,Emam Walid6ORCID

Affiliation:

1. Department of Mathematics and Statistics, Hazara University, Mansehra 21300, Pakistan

2. Department of Computer Science, National University of Sciences and Technology, Balochistan Campus (NBC), Quetta 87300, Pakistan

3. School of Qilu Transportation, Shandong University, Jinan, China

4. Department of Mathematics, Mohi-ud-Din Islamic University, Nerian Sharif, AJ&K 12080, Pakistan

5. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China

6. Department of Statistics and Operations Research, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

Industrial applications in domains such as warm rolling, crystal development, thermal extrusion and optical fiber illustration are seeing a significant increase. These applications specifically focus on addressing the challenge of a cylinder in motion inside a fluid environment. Elevated temperatures may affect the viscosity and thermal conductivity of fluids. Understanding the relationship between temperature and the properties of fluids is crucial. In light of these presumptions, the primary goal of this study is to examine, under transverse magnetic field, shape factor, velocity, thermal slip conditions and viscous dissipation, how temperature-dependent fluid properties could enhance the heat transfer efficiency and performance evolution of ternary hybrid nanofluid. In order to study flow fluctuations, the impact of nanoparticle addition and improvements in heat transfer, a variable Prandtl number is also included. The use of similarity variables converts the controlling flow model from partial differential equations (PDEs) to ordinary differential equations (ODEs). Mathematica’s shooting strategy solves ODEs using the fourth-order Runge–Kutta (RK-IV) method. Numerical calculations were done after setting parameters to acquire the desired results. Analytical data are provided in tables and graphs for convenient usage. The results showed that the velocity profile increases as the values of [Formula: see text], Pr, M, Re and S grow, and decreases when the values of [Formula: see text] decrease. Re, Pr and S lower the temperature profile, whereas [Formula: see text], [Formula: see text] and Ec raise it. The skin friction profile steepens as [Formula: see text], S, Re and M increase relative to the stretched cylinder, and flattens as [Formula: see text] and [Formula: see text] decrease. The Nusselt number profile rises as [Formula: see text], Pr, S and Re decrease with [Formula: see text], Ec and [Formula: see text]. When the Prandtl number goes from 3.0 to 6.2 in a ternary hybrid nanofluid with brick-shaped nanoparticles, the Nusselt number goes up by around 55.7%.

Funder

Researchers Supporting Project

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3