Thermal transport analysis of squeezing hybrid nanofluid flow between two parallel plates

Author:

Shaheen Abida1,Imran Muhammad1,Waqas Hassan1ORCID,Raza Mohsan1,Rashid Saima1

Affiliation:

1. Department of Mathematics, Government College University Faisalabad, Faisalabad, Pakistan

Abstract

Hybrid nanofluids outperform mono nanofluids in terms of heat transmission. They can be found in heat exchangers, the automobile industry, transformer cooling, and electronic cooling, in addition to solar collectors and military equipment. The primary goal of this study is to scrutinize the magnetohydrodynamic hybrids nanofluid (Copper-oxides and Titanium dioxide/water) [Formula: see text] and [Formula: see text] nanofluid flow in two parallel plates using walls suction/injection under the influence of a magnetic field and thermal radiation. Implementing the appropriate transformation, the governing partial differential equations are converted into equivalent ordinary differential equations. In MATLAB software, the built-in numerical technique bvp4c is used to evaluate the final system to generate the graphical results against velocity and temperature gradient for various parameters. The increasing evaluation of Reynolds number and magnetic parameter influenced velocity concentration. The response surface method is used to generate the sensitivity and contour graphs and tables. Skin friction and the Nusselt number have an outcome on flow characteristics as well. This type of research is critical in the coolant process, aviation engineering, and industrial cleaning processes, among other fields. In several cases, comparing current and historical findings reveals good agreement.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3