Impact of hall and ion slip in a thermally stratified nanofluid flow comprising Cu and Al2O3 nanoparticles with nonuniform source/sink

Author:

Gul Nosheen,Ramzan Muhammad,Chung Jae Dong,Kadry Seifedine,Chu Yu-Ming

Abstract

AbstractNanofluids play a pivotal role in the heat transport phenomenon and are essential in the cooling process of small gadgets like computer microchips and other related applications in microfluidics. Having such amazing applications of nanofluids, we intend to present a theoretical analysis of the thermally stratified 3D flow of nanofluid containing nano solid particles (Cu and Al2O3) over a nonlinear stretchable sheet with Ion and Hall slip effects. Moreover, the features of buoyance effect and non-uniform heat source/skin are also analyzed. For the study of numerically better results, Tawari and Das model is adopted here. For the conversion of the system of partial differential equations into ordinary differential equations, apposite transformations are engaged and are tackled by utilizing the bvp4c scheme of MATLAB software. The effects of dimensionless parameters on velocity and temperature profiles are depicted with the help of graphs. Additionally, the Skin friction coefficient and Nusselt number for the practical applications are examined in the tabular form. Verification of the current study by comparing it with an already published work in a special case is also a part of this study. Results show that the thermal performance of copper nanoparticles is more than alumina nanoparticles. An upsurge in the temperature of nanofluid is observed when the strength of the magnetic field is enhanced. However, the temperature of partially ionized nanofluid is significantly lowered because of the collisions of electrons and ions.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3