Study on the threshold for superposed deformation of simply supported bridge creep and track slab upwarp in high-speed railway

Author:

Li Guolong1,Gao Mangmang1,Yang Fei1,Wei Zilong1,Yang Jingjing1

Affiliation:

1. Infrastructure Inspection Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing, China

Abstract

Based on long-term inspection data about track geometric irregularity of 32 m-span simply supported girder bridge in China Railway High-Speed for nearly 10 years, it is found that there is continuous periodic track longitudinal level (TLL) with different wavelengths, thereinto, simply supported girder bridges creep and ballastless track slab upwarp are the primary reasons. Moreover, there are two types of variation trends for bridge creep of 32 m simply-supported bridges with ballastless track, that is, stable type and increasing type, and the maximum [Formula: see text] (the peak-to-peak value of track longitudinal level) is 7.1 mm for track longitudinal level caused by bridge creep, and the maximum [Formula: see text] caused by upwarp deformation of ballastless track slab is 3.2 mm. Hence, this paper investigated the effects on running performance and structure service performance of random track irregularity and additional track irregularity caused by bridge creep, track slab upwarp deformation or superposition of both, a three-dimensional finite element model of vehicle-track-bridge for dynamic simulation calculation was established, the threshold values for bridge creep and track slab deformation under 350 km/h were proposed based on running performance and structure service performance. Finally, research results show that bridge creep influences on the ride comfort significantly, but running safety barely. Due to the short wavelength of TLL, the track slab upwarp deformation affects both the ride comfort and running safety heavily. The car bodies are more sensitive to bridge creep and produce mainly low-frequency vibration, but the rate of wheel load reduction is more sensitive to the track deformation and shows the high-frequency vibration. For 32 m simply supported bridges without track slab deformation, the [Formula: see text] caused by bridge creep should be limited to 7 mm, and 9 mm in difficult situations. When the [Formula: see text] caused by bridge creep is small (less than 5 mm), the [Formula: see text] caused by track slab upwarp deformation must be less than 4 mm. When both deformations exist simultaneously, the [Formula: see text] caused by superposition deformations of both should not exceed 10 mm, with track slab upwarp deformation not exceeding 4 mm. In the presence of both structural deficiencies, it is suggested that the track slab deformation must be eliminated when it is difficult to eliminate the bridge creep.

Funder

the National Natural Science Foundation

China State Railway Group Corporation Limited

China Academy of Railway Sciences Corporation Limited science foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interface behaviour analysis of China railway track system Ⅱ slab ballastless track under temperature action and initial gap damage;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3