Research on non-parametric prediction method of reciprocating compressor time series based on prediction credibility scale

Author:

Li Ying1ORCID,Pan Yunjie1,Liu Yan2,Ba Peng1,Wu Shihu1

Affiliation:

1. School of Mechanical Engineering, Shenyang Ligong University, Shenyang, Liaoning, China

2. School of Energy and Built Environment, Guilin University of Aerospace Technology, Guilin, Guangxi, China

Abstract

Aiming at the long-term unpredictability of the reciprocating compressor vibration signal, a non-parametric prediction method of reciprocating compressor time series based on the prediction credibility scale is proposed in this paper. The method is to take the multifractal singular spectrum as the prediction parameter and use the Smoothness Priors Approach (SPA) method to obtain the singular spectrum parameters of different components, and construct the phase space reconstruction dynamic modeling domains. It enables the prediction model to reflect the real-time characteristics of the dynamics evolution of complex systems and highlights the independent influence of each component on the prediction. Meanwhile, the information entropy saturation principle is introduced into the K-Nearest Neighbor (KNN) model to establish the improved K neighborhood dynamic non-parametric prediction model based on the maximum prediction credibility scale, which improves the credibility of the prediction results. Finally, a complete SPA&PSR_KNN prediction algorithm is proposed. Through example validation and error analysis, compared with KNN, BP, and SVM, it can be seen that the prediction results of spectral characteristic parameters obtained by this algorithm have smaller error and higher reliability, and faster operation speed. Thus, the prediction of vibration signal time series of reciprocating compressor is realized.

Funder

Scientific Research Fund Project of Liaoning Provincial Department of Education

High Level Achievement Construction Program of Shenyang Ligong University

Funding of Shenyang Ligong University’s Research Support Program for High-level Talents

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3