SCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends

Author:

Pandit Ravi1ORCID,Astolfi Davide2,Hong Jiarong3,Infield David4,Santos Matilde5

Affiliation:

1. Centre for Life-cycle Engineering and Management, Cranfield University, Bedford, UK

2. Department of Engineering, University of Perugia, Perugia, Italy

3. Mechanical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA

4. Electronics and Electrical Engineering department, University of Strathclyde, Glasgow, UK

5. Institute of Knowledge Technology, Complutense University of Madrid, Madrid, Spain

Abstract

This paper reviews the recent advancement made in data-driven technologies based on SCADA data for improving wind turbines’ operation and maintenance activities (e.g. condition monitoring, decision support, critical components failure detections) and the challenges associated with them. Machine learning techniques applied to wind turbines’ operation and maintenance (O&M) are reviewed. The data sources, feature engineering and model selection (classification, regression) and validation are all used to categorise these data-driven models. Our findings suggest that (a) most models use 10-minute mean SCADA data, though the use of high-resolution data has shown greater advantages as compared to 10-minute mean value but comes with high computational challenges. (b) Most of SCADA data are confidential and not available in the public domain which slows down technological advancements. (c) These datasets are used for both, the classification and regression of wind turbines but are used in classification extensively. And, (d) most commonly used data-driven models are neural networks, support vector machines, probabilistic models and decision trees and each of these models has its own merits and demerits. We conclude the paper by discussing the potential areas where SCADA data-based data-driven methodologies could be used in future wind energy research.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3