A Robust Wind Turbine Component Health Status Indicator

Author:

Lázaro Roberto12ORCID,Melero Julio J.1ORCID,Yürüşen Nurseda Y.1ORCID

Affiliation:

1. Instituto Universitario de Investigación Mixto de la Energía y Eficiencia de los Recursos de Aragón ENERGAIA, Universidad de Zaragoza, Campus Río Ebro, Ed. CIRCE, Mariano Esquillor Gómez 15, 50018 Zaragoza, Spain

2. CIRCE Centro Tecnológico, Parque Empresarial Dinamiza, Avenida Ranillas, Edificio 3D, Planta 1, 50018 Zaragoza, Spain

Abstract

Wind turbine components’ failure prognosis allows wind farm owners to apply predictive maintenance techniques to their fleets. Determining the health status of a turbine’s component typically requires verifying many variables that should be monitored simultaneously. The scope of this study is the selection of the more relevant variables and the generation of a health status indicator (Failure Index) to be considered as a decision criterion in Operation and Maintenance activities. The proposed methodology is based on Gaussian Mixture Copula Models (GMCMs) combined with a smoothing method (Cubic spline smoothing) to define a component’s health index based on the previous behavior and relationships between the considered variables. The GMCM allows for determining the component’s status in a multivariate environment, providing the selected variables’ joint probability and obtaining an easy-to-track univariate health status indicator. When the health of a component is degrading, anomalous behavior becomes apparent in certain Supervisory Control and Data Acquisition (SCADA) signals. By monitoring these SCADA signals using this indicator, the proposed anomaly detection method could capture the deviations from the healthy working state. The resulting indicator shows whether any failure is likely to occur in a wind turbine component and would aid in a preventive intervention scheduling.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3