Affiliation:
1. Hunan University of Science and Engineering, Yongzhou, China
2. Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
Abstract
Objective Colorectal cancer (CRC) is the most common cancer worldwide. Patient outcomes following recurrence of CRC are very poor. Therefore, identifying the risk of CRC recurrence at an early stage would improve patient care. Accumulating evidence shows that autophagy plays an active role in tumorigenesis, recurrence, and metastasis. Methods We used machine learning algorithms and two regression models, univariable Cox proportion and least absolute shrinkage and selection operator (LASSO), to identify 26 autophagy-related genes (ARGs) related to CRC recurrence. Results By functional annotation, these ARGs were shown to be enriched in necroptosis and apoptosis pathways. Protein–protein interactions identified SQSTM1, CASP8, HSP80AB1, FADD, and MAPK9 as core genes in CRC autophagy. Of 26 ARGs, BAX and PARP1 were regarded as having the most significant predictive ability of CRC recurrence, with prediction accuracy of 71.1%. Conclusion These results shed light on prediction of CRC recurrence by ARGs. Stratification of patients into recurrence risk groups by testing ARGs would be a valuable tool for early detection of CRC recurrence.
Funder
the construct program of applied characteristic discipline in Hunan University of Science and Engineering
Subject
Biochemistry (medical),Cell Biology,Biochemistry,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献