Correlation of autophagy-related genes for predicting clinical prognosis in colorectal cancer

Author:

Liu Liyan123ORCID,Zhang Jilin4,Liu Hongdong3,Shi Min3,Zhang Jie3,Chen Li5,Huang Luqi6,Li Bin3,Xu Peng3

Affiliation:

1. Department of Pharmacy, Jiangxi Cancer Hospital, 519 Beijing East Road, Nanchang, 330029, PR China

2. Department of Pharmacy, Affiliated Cancer Hospital of Nanchang University, 519 Beijing East Road, Nanchang, 330029, PR China

3. Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China

4. Department of Traditional Chinese Medicine, Jiangxi Provincial People’s Hospital, 92 Aiguo Road, Nanchang, 330006, PR China

5. College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, 611137, PR China

6. State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medical, China Academy of Chinese Medical Sciences, 16 Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, PR China

Abstract

Aim: Autophagy plays a controversial role in cancer. The role of autophagy-related genes (ARGs) in colorectal cancer (CRC) was evaluated based on publicly available data from The Cancer Genome Atlas and the Human Autophagy Database. Materials & methods: After collecting CRC-related transcript and clinical data and a list of ARGs from public databases, the Wilcoxon test was used to identify the differentially expressed ARGs between CRC and paired normal tissues. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were used to identify the major biological properties and pathways associated with these genes. Univariate Cox regression was used to identify the prognosis-associated ARGs, and a forest plot was used to visualize the results. Kaplan–Meier analysis of the 5-year survival rate was performed. Univariate and multivariate Cox analyses were used to verify the impact of the prognosis-associated ARGs. Results: A total of 36 differentially expressed genes (16 upregulated and 20 downregulated in CRC) were obtained from among 206 ARGs. There were 53 enriched pathways, including the p53 signaling pathway, platinum drug resistance, apoptosis, EGFR tyrosine kinase inhibitor resistance and ErbB signaling pathway (p- and q-values <0.05). Kaplan–Meier analysis showed that the 5-year survival rate was 46.0% (95% CI: 0.335–0.631) and 76.0% (95% CI: 0.651–0.886) in the high- and low-risk groups, respectively. The high-risk patients had worse survival probability (p = 6.256 × 10-5). Independent-samples t-tests revealed that MAP1LC3C expression was higher in patients aged ≤65 than >65 (p = 0.022); RAB7A expression was higher in patients aged ≤65 than >65 (p = 7.31 × 10-4), higher in M1 than M0 (p = 0.042), higher in N1–3 than N0 (p = 0.002) and higher in stage III and IV than I and II (p = 0.042); risk score was higher in N1–3 than N0 (p = 0.001) and in stage III and IV than I and II (p = 0.002); and WIPI2 expression was higher in M1 than M0 (p = 0.002), higher in N1–3 than N0 (p = 2.059 × 10-7) and higher in stage III and IV than I and II (p = 2.299 × 10-7). There were no differences in risk score between males and females (p = 0.593), T1–2 and T3–4 (p = 0.082) or M0 and M1 (p = 0.072). Univariate and multivariate Cox analyses showed that RAB7A was a lower-risk gene, while MAP1LC3C, WIPI2, DAPK1, ULK3 and PELP1 were high-risk genes. Conclusion: Certain ARGs are potential prognostic molecular markers of poor prognosis in CRC. Additionally, the p53 signaling pathway, platinum drug resistance, apoptosis, EGFR tyrosine kinase inhibitor resistance and ErbB signaling pathway may be critical pathways regulated by ARGs in CRC.

Funder

Chinese Medicine Science and Technology Project of Health Commission of Jiangxi Province,

The first-class subject project of Jiangxi University of Traditional Chinese Medicine,

The Projects of Central Level Major Increase and Decrease,

Workstation Project of Jiangxi University of Traditional Chinese Medicine,

Publisher

Future Medicine Ltd

Subject

Biochemistry (medical),Clinical Biochemistry,Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3