BOLD MRI to evaluate early development of renal injury in a rat model of diabetes

Author:

Wang Qidong12,Guo Chuangen12,Zhang Lan3,Zhang Rui1,Wang Zhaoming4,Xu Ying5,Xiao Wenbo13

Affiliation:

1. Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

2. *These authors contributed equally to this work

3. Department of Radiology, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China

4. Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

5. Department of Nephrology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

Abstract

Objective To investigate changes in renal oxygenation levels by blood-oxygenation-level dependent (BOLD)-magnetic resonance imaging (MRI), and to evaluate BOLD-MRI for detecting early diabetic renal injury. Methods Seventy-five rats, with unilateral nephrectomy, were randomly divided into streptozotocin-induced diabetes mellitus (DM, n = 65) and normal control (NC, n = 10) groups. BOLD-MRI scans were performed at baseline (both groups) and at 3, 7, 14, 21, 28, 35, 42, 49, 56, 63 and 70 days (DM only). Renal cortical (C) and medullary (M) R2* signals were measured and R2* medulla/cortex ratio (MCR) was calculated. Results DM-group CR2* and MR2* values were significantly higher than NC values following diabetes induction. R2* values increased gradually and peaked at day 35 (CR2*, 33.95 ± 0.34 s–1; MR2*, 43.79 ± 1.46 s–1), then dropped gradually (CR2*, 33.17 ± 0.69 s–1; MR2*, 41.61 ± 0.95 s–1 at day 70). DM-group MCR rose gradually from 1.12 to 1.32 at day 42, then decreased to 1.25 by day 70. Conclusions BOLD-MRI can be used to non-invasively evaluate renal hypoxia and early diabetic renal injury in diabetic rats. MCR may be adopted to reflect dynamic changes in renal hypoxia.

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3