Self-organized flocking with a mobile robot swarm: a novel motion control method

Author:

Ferrante Eliseo12,Turgut Ali Emre3,Huepe Cristián4,Stranieri Alessandro1,Pinciroli Carlo1,Dorigo Marco1

Affiliation:

1. IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

2. Laboratory of Socioecology and Social Evolution, Katholieke Universiteit Leuven, Leuven, Belgium

3. Mechatronics Department, Türk Hava Kurumu University, Etimesgut/Ankara,Turkey

4. CHuepe Labs Inc., Chicago IL, USA

Abstract

In flocking, a swarm of robots moves cohesively in a common direction. Traditionally, flocking is realized using two main control rules: proximal control, which controls the cohesion of the swarm using local range-and bearing information about neighboring robots; and alignment control, which allows the robots to align in a common direction and uses more elaborate sensing mechanisms to obtain the orientation of neighboring robots. So far, limited attention has been given to motion control, used to translate the output of these two control rules into robot motion. In this paper, we propose a novel motion control method: magnitude-dependent motion control (MDMC). Through simulations and real robot experiments, we show that, with MDMC, flocking in a random direction is possible without the need for alignment control and for robots having a preferred direction of travel. MDMC has the advantage to be implementable on very simple robots that lack the capability to detect the orientation of their neighbors. In addition, we introduce a small proportion of robots informed about a desired direction of travel. We compare MDMC with a motion control method used in previous robotics literature, which we call magnitude-independent motion control (MIMC), and we show that the swarms can travel longer distances in the desired direction when using MDMC instead of MIMC. Finally, we systematically study flocking under various conditions: with or without alignment control, with or without informed robots, with MDMC or with MIMC.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3