Learning to Maintain Upright Posture: What can be Learned Using Adaptive Neural Network Models?

Author:

Borghese N. Alberto1,Calvi Andrea2

Affiliation:

1. Laboratory of Human Motion Analysis and Virtual Reality (MAVR), Department of Computer Science, University of Milan,

2. Department of Bioengineering, Politechnic of Milan

Abstract

Human upright posture is an unstable position: Continuous activation of postural muscles is required to avoid falling down. This is the output of a complex control system that monitors a very large number of inputs, related to the orientation of the body segments, to produce an adequate output as muscle activation. Complexity arises because of the very large number of correlated inputs and out puts: The finite contraction and release time of muscles and the neural control loop delays make the problem even more difficult. Nevertheless, upright posture is a capability that is learned in the first year of life. Here, the learning process is investigated by using a neural network model for the controller and the reinforcement learning paradigm. To this end, after creating a mechanically realistic digital human body, a feedback postural controller is defined, which outputs a set of joint torques as a function of orientation and rotation speed of the body segments. The controller is made up of a neural net work, whose `synaptic weights' are determined through trial-and-error (failure in maintaining upright posture) by using a reinforcement learning strategy. No desired control action is specified nor particular structure given to the controller. The results show that the anatomical arrangement of the skeleton is sufficient to shape a postural control, robust against torque perturbations and noise, and flexible enough to adapt to changes in the body model in a short time. Moreover, the learned kinematics closely resembles the data reported in the literature; it emerges from the interaction with the environment, only through trial-and-error. Overall, the results suggest that anatomical arrangement of the body segments may play a major role in shaping human motor control.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3