Happiness as an intrinsic motivator in reinforcement learning

Author:

Gao Yue1,Edelman Shimon2

Affiliation:

1. Department of Computer Science, Cornell University, USA

2. Department of Psychology, Cornell University, USA

Abstract

Reinforcement learning, a general and universally useful framework for learning from experience, has been broadly recognized as a critically important concept for understanding and shaping adaptive behavior, both in ethology and in artificial intelligence. A key component in reinforcement learning is the reward function, which, according to an emerging consensus, should be intrinsic to the learning agent and a matter of appraisal rather than a simple reflection of external outcomes. We describe an approach to intrinsically motivated reinforcement learning that involves various aspects of happiness, operationalized as dynamic estimates of well-being. In four experiments, in which simulated agents learned to explore and forage in simulated environments, we show that agents whose reward function properly balances momentary (hedonic) and longer-term (eudaimonic) well-being outperform agents equipped with standard fitness-oriented reward functions. Our findings suggest that happiness-based features can be useful in developing robust, general-purpose reward mechanisms for intrinsically motivated autonomous agents.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3