Intrinsic Motivation and Reinforcement Learning

Author:

Barto Andrew G.

Publisher

Springer Berlin Heidelberg

Reference105 articles.

1. Ackley, D.H., Littman, M.: Interactions between learning and evolution. In: Langton, C., Taylor, C., Farmer, C., Rasmussen, S. (eds.) Artificial Life II (Proceedings Volume X in the Santa Fe Institute Studies in the Sciences of Complexity, pp. 487–509. Addison-Wesley, Reading (1991)

2. Andry, P., Gaussier, P., Nadel, J., Hirsbrunner, B.: Learning invariant sensorimotor behaviors: A developmental approach to imitation mechanisms. Adap. Behav. 12, 117–140 (2004)

3. Arkes, H.R., Garske, J.P.: Psychological Theories of Motivation. Brooks/Cole, Monterey (1982)

4. Baranes, A., Oudeyer, P.-Y.: Intrinsically motivated goal exploration for active motor learning in robots: A case study. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan 2010

5. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discr. Event Dynam. Syst. Theory Appl. 13, 341–379 (2003)

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autoencoder Reconstruction Model for Long-Horizon Exploration;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Model Based Reinforcement Learning Pre-Trained with Various State Data;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

3. D2AH-PPO: Playing ViZDoom With Object-Aware Hierarchical Reinforcement Learning;2024 7th International Symposium on Autonomous Systems (ISAS);2024-05-07

4. Inverse Reinforcement Learning with Agents’ Biased Exploration Based on Sub-Optimal Sequential Action Data;Journal of Advanced Computational Intelligence and Intelligent Informatics;2024-03-20

5. Enhancing End-to-End Multi-Task Dialogue Systems: A Study on Intrinsic Motivation Reinforcement Learning Algorithms for Improved Training and Adaptability;2024 IEEE 18th International Conference on Semantic Computing (ICSC);2024-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3