Chemical–physical and in vivo evaluations of a self-assembling amphiphilic peptide as an injectable hydrogel scaffold for biomedical applications

Author:

Solaro Roberto1,Alderighi Michele1,Barsotti Maria C2,Battisti Antonella1,Cifelli Mario1,Losi Paola3,Di Stefano Rossella2,Ghezzi Lisa1,Tiné Maria R1

Affiliation:

1. Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy

2. Cardiovascular Research Laboratory, Cardiac, Thoracic and Vascular Department, University of Pisa, Pisa, Italy

3. Laboratory for Biomaterials and Graft Technology, Institute of Clinical Physiology, CNR, Massa, Italy

Abstract

The self-aggregation and gelation of an amphiphilic peptide (C17H35CONH–A4G3ERGD, peptide amphiphile) were studied by light scattering, viscometry, nuclear magnetic resonance diffusometry, and atomic force microscopy. The peptide amphiphile critical aggregation concentration was evaluated to be 16 and 60 µM by light scattering and viscometry, respectively. The observed difference was attributed to the larger sensitivity of the latter technique to the presence of long fibrils. The addition of one equivalent or more of divalent cations (Ca2+ and Mg2+) to peptide amphiphile formed dense incoherent hydrogels. Based on the atomic force microscopy and nanoindentation data, both the hydrogel morphology and stiffness were independent of the cation type and peptide amphiphile concentration. However, gel stiffness increased on increasing Ca2+/peptide amphiphile molar ratio while a parallel decrease in the apparent water diffusion rate was observed by nuclear magnetic resonance diffusometry. The dispersions of endothelial progenitor cells in the peptide amphiphile hydrogels were evaluated in vivo on a rat tissue hypoxia model. Significant capillary formation at the injection site was observed by tissue appearance and histological examination, which indicated endothelial progenitor cell/peptide amphiphile hydrogel-enhanced angiogenesis in ischemic tissue.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3