Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering

Author:

Rocha Pedro M1,Santo Vítor E1,Gomes Manuela E1,Reis Rui L1,Mano João F2

Affiliation:

1. 3BCaractère manquant ?s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal

2. 3BCaractère manquant ?s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal,

Abstract

Tissue engineering (TE) is an emerging field for the regeneration of damaged tissues. The combination of hydrogels with stem cells and growth factors (GFs) has become a promising approach to promote cartilage regeneration. In this study, carrageenan-based hydrogels were used to encapsulate both cells and transforming growth factor-β1 (TGF-β1). The ATDC5 cell line was encapsulated to determine the cytotoxicity and the influence of polymer concentration on cell viability and proliferation. Human adipose-derived stem cells (hASCs) were encapsulated with TGF-β1 in the hydrogel networks to enhance the chondrogenic differentiation of hASCs. Specific cartilage extracellular matrix molecules expression by hASCs were observed after 14 days of cultures of the constructs under different conditions. The κ-carrageenan was found to be a suitable biomaterial for cell and GF encapsulation. The incorporation of TGF-β1 within the carrageenan-based hydrogel enhanced the cartilage differentiation of hASCs. These findings indicate that this new system for cartilage TE is very promising for injectable thermoresponsive formulation applications.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3