Sodium triphosphate–capped silver nanoparticles on a decellularized scaffold-based polyurethane vascular patch for bacterial infection inhibition and rapid endothelialization

Author:

Li Yajuan1,Liu Cheng2,Mo Hong1,Zhang Jun1,Jiang Xuefeng1,Zhang Luxia1,Yang Lutao1,Fu Lei1,He Lei1,Zhao Yue1,Shen Jian1ORCID,Qiao Tong2

Affiliation:

1. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China

2. Medical School, Nanjing University, Nanjing, P. R. China

Abstract

With increasing incidence rate of cardiovascular diseases and implant-related infections, there is growing demand for vascular patches that can promote endothelialization and resist bacterial infection. In this work, we immobilized sodium triphosphate–capped silver nanoparticles onto a polyurethane film to obtain a composite film and evaluated its in vitro biocompatibility. Subsequently, we anchored sodium triphosphate–capped silver nanoparticles onto a polyurethane-coated decellularized scaffold to prepare a vascular patch and investigated its in vivo performance in a mouse model. The prepared vascular patch demonstrated excellent biocompatibility and potent antibacterial activity against Escherichia coli and Staphylococcus aureus. It still maintained the surgical artery patency at 30 days after implantation. At the same time, the endothelialization at the surgical site was achieved, showing its ability to facilitate endothelialization. Therefore, it may be a promising candidate for combating bacterial infection and treating diseased blood vessels.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3