Biosynthesized silver nanoparticles loaded in gelatine hydrogel for a natural antibacterial and anti-biofilm wound dressing

Author:

Katas Haliza1ORCID,Mohd Akhmar Maryam Arinah1,Suleman Ismail Abdalla Sundos1

Affiliation:

1. Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia

Abstract

Antibiotic-resistance and bacterial bioburden are the threats to wound healing. Nanoparticles are a revolutionary advancement in nanomedicine owing to their antibacterial properties, to be used as a promising alternative to antibiotics. A wound dressing with antibacterial and anti-biofilm effects may be a plausible strategy in curbing wound exacerbation caused by bacterial infection. Silver nanoparticles (AgNPs) are known for their excellent antibacterial activity. In present study, biosynthesized AgNPs using spent mushroom substrate (SMS) as reducing agent while chitosan as stabilizing agent were successfully produced. The nanoparticles exhibited considerable antibacterial and anti-biofilm activities with higher sensitivity towards Gram-negative bacteria. These AgNPs were later incorporated into genipin-crosslinked gelatine hydrogels as a wound dressing. The hydrogels were characterized for their physical, rheological and swelling properties, besides in vitro release of AgNPs. The formulated hydrogels demonstrated an adequate release of the AgNPs with acceptable physical, rheological and swelling properties, suitable as a vehicle for wound drug delivery. The antibacterial and anti-biofilm of the hydrogels against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli were effective in inhibiting the growth of the selected bacteria with minimum inhibitory concentration (MIC) of 63 μg/mL. In summary, genipin-crosslinked gelatine hydrogels loaded with the AgNPs are a promising anti-microbial wound dressing, a potential strategy for combating biofilm of wound infections and accelerating healing.

Funder

universiti kebangsaan malaysia

Geran Universiti Penyelidikan

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3