Microstructured chitosan/poly(γ-glutamic acid) polyelectrolyte complex hydrogels by computer-aided wet-spinning for biomedical three-dimensional scaffolds

Author:

Puppi Dario1,Migone Chiara1,Morelli Andrea1,Bartoli Cristina1,Gazzarri Matteo1,Pasini Dario2,Chiellini Federica1

Affiliation:

1. BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy

2. Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy

Abstract

The application of additive manufacturing principles to hydrogel processing represents a powerful route to develop porous three-dimensional constructs with a variety of potential biomedical applications, such as scaffolds for tissue engineering and three-dimensional in vitro tissue models. The aim of this study was to develop novel porous hydrogels based on a microstructured polyelectrolyte complex between chitosan and poly(γ-glutamic acid) by applying a computer-aided wet-spinning technique. The developed fabrication process was used to build up three-dimensional porous hydrogels by collecting microstructured layers made of chitosan/poly(γ-glutamic acid) on top of the other. Microstructured polyelectrolyte complex hydrogels were characterized and compared to chitosan/poly(γ-glutamic acid) porous hydrogels with similar composition prepared by conventional freeze-drying technique. Fourier transform infrared analysis confirmed the formation of an electrostatic interaction between the two processed polymers in all the developed chitosan/poly(γ-glutamic acid) hydrogels. The composition of the porous constructs as well as the employed processing techniques had a significant influence on the resulting swelling, thermal, and mechanical properties. In particular, the combination of the ionic interaction between chitosan/poly(γ-glutamic acid) and the defined internal microarchitecture of microstructured polyelectrolyte complex hydrogels provided a significant improvement of the compressive mechanical properties. Preliminary in vitro biological investigations revealed that microstructured polyelectrolyte complex hydrogels were suitable for the adhesion and proliferation of Balb/3T3 clone A31 mouse embryo fibroblasts. The encouraging results in terms of cytocompatibility and stability of the microstructure in aqueous solutions due to the ionic crosslinking suggest the investigation of the developed microstructured polyelectrolyte complex hydrogels as suitable scaffolds for three-dimensional cells’ culture.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3