The effectiveness, cytotoxicity, and intracellular trafficking of nonviral vectors for gene delivery to bone mesenchymal stem cells

Author:

Peng Lin1,Gao Yuan1,Xue Ya-Nan2,Huang Shi-Wen2,Zhuo Ren-Xi2

Affiliation:

1. State Key Laboratory of Oral Diseases, West China College & Hospital of Stomatology, Sichuan University, Chengdu, P.R. China

2. Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P.R. China

Abstract

Nonviral gene delivery that enables exogenous gene expression in bone mesenchymal stem cells could accelerate clinical application of cell-based gene therapy. This study systematically investigated and compared the potential of polyethylenimine and Lipofectamine 2000 as gene carriers to modify bone mesenchymal stem cells including transfection efficiency, cytotoxicity, intracellular trafficking as well as cell membrane damage and apoptosis/necrosis. Polyethylenimine at its optimal N/P ratio of 10 demonstrated the same toxic effects but lower transfection efficiency (17.1% vs 39.5%) compared to Lipofectamine. Intracellular trafficking resulted in over 80% of bone mesenchymal stem cells that were able to take up polyethylenimine polyplexes, but only 20.69% showed nuclear uptake; however, for Lipofectamine, about half bone mesenchymal stem cells were found to uptake lipoplexes but about 30% displayed nuclear localization. Moreover, the percentages of nuclear localization of both vectors were in close relationship with their transfection efficiency. We concluded that for bone mesenchymal stem cell transfection, polyethylenimine displayed high cellular uptake but Lipofectamine was more effective in delivering genes into the nucleus, which was likely the underlying basis for a more efficient gene expression. Further structure modification of polyethylenimine such as improving its nuclear entry ability will eventually make it a better candidate for bone mesenchymal stem cells’ in vitro gene delivery.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3