Screening a chemically defined extracellular matrix mimetic substrate library to identify substrates that enhance substrate-mediated transfection

Author:

Hamann Andrew1ORCID,Thomas Alvin K2,Kozisek Tyler1,Farris Eric1,Lück Steffen2,Zhang Yixin2,Pannier Angela K1

Affiliation:

1. Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA

2. B CUBE – Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany

Abstract

Nonviral gene delivery, though limited by inefficiency, has extensive utility in cell therapy, tissue engineering, and diagnostics. Substrate-mediated gene delivery (SMD) increases efficiency and allows transfection at a cell-biomaterial interface, by immobilizing and concentrating nucleic acid complexes on a surface. Efficient SMD generally requires substrates to be coated with serum or other protein coatings to mediate nucleic acid complex immobilization, as well as cell adhesion and growth; however, this strategy limits reproducibility and may be difficult to translate for clinical applications. As an alternative, we screened a chemically defined combinatorial library of 20 different extracellular matrix mimetic substrates containing combinations of (1) different sulfated polysaccharides that are essential extracellular matrix glycosaminoglycans (GAGs), with (2) mimetic peptides derived from adhesion proteins, growth factors, and cell-penetrating domains, for use as SMD coatings. We identified optimal substrates for DNA lipoplex and polyplex SMD transfection of fibroblasts and human mesenchymal stem cells. Optimal extracellular matrix mimetic substrates varied between cell type, donor source, and transfection reagent, but typically contained Heparin GAG and an adhesion peptide. Multiple substrates significantly increased transgene expression (i.e. 2- to 20-fold) over standard protein coatings. Considering previous research of similar ligands, we hypothesize extracellular matrix mimetic substrates modulate cell adhesion, proliferation, and survival, as well as plasmid internalization and trafficking. Our results demonstrate the utility of screening combinatorial extracellular matrix mimetic substrates for optimal SMD transfection towards application- and patient-specific technologies. Impact statement Substrate-mediated gene delivery (SMD) approaches have potential for modification of cells in applications where a cell-material interface exists. Conventional SMD uses ill-defined serum or protein coatings to facilitate immobilization of nucleic acid complexes, cell attachment, and subsequent transfection, which limits reproducibility and clinical utility. As an alternative, we screened a defined library of extracellular matrix mimetic substrates containing combinations of different glycosaminoglycans and bioactive peptides to identify optimal substrates for SMD transfection of fibroblasts and human mesenchymal stem cells. This strategy could be utilized to develop substrates for specific SMD applications in which variability exists between different cell types and patient samples.

Funder

Cooperative State Research, Education, and Extension Service

Bundesministerium für Bildung und Forschung

German Federal Ministry of Economics and Energy

National Institute of Biomedical Imaging and Bioengineering

National Science Foundation

National Institutes of Health

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3