A comparative mechanical and biocompatibility study of poly(ε-caprolactone), hybrid poly(ε-caprolactone)–silk, and silk nanofibers by colloidal electrospinning technique for tissue engineering

Author:

Sheikh Faheem A1,Ju Hyung Woo1,Moon Bo Mi1,Park Hyun Jung1,Kim Jung-Ho1,Kim Soo Hyeon1,Lee Ok Joo1,Park Chan Hum12

Affiliation:

1. Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, South Korea

2. Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Hallym University, Chuncheon, South Korea

Abstract

Poly(ε-caprolactone) is an established polymer used in the fabrication of scaffolds for tissue engineering applications. Poly(ε-caprolactone)’s intrinsic hydrophobicity and toxicity, however, is greater than other natural polymers which limits its applicability. In this study, these problems were addressed by the modification of poly(ε-caprolactone) nanofibers with nanoparticles made from natural polymers, such as silk fibroin. Silk fibroin nanoparticles were prepared by desolvation and blended with poly(ε-caprolactone) to form a colloidal solution capable of forming nanofibers by electrospinning. Fabricated silk fibroin nanoparticles and three different nanofibers were characterized by transmission electron microscopy, variable pressure field emission scanning electron microscope, contact angle, Fourier transform infrared spectroscopy, thermogravimetric analysis, as well as an evaluation of their mechanical properties. The hybrid nanofibers incorporated with silk nanoparticles improved water absorbability compared to pure poly(ε-caprolactone) nanofibers and had much better mechanical properties than the silk fibroin nanofibers. The cytotoxicity and cell attachment tests were carried by culturing NIH 3T3 fibroblasts with the nanofibers. The hybrid nanofibers exhibited better cell viability and cell attachment than the pure poly(ε-caprolactone) nanofibers. Furthermore, the silk fibroin nanoparticles improved the water contact angle and enhanced cell interaction compared to the unmodified poly(ε-caprolactone). Based on these results, the modification of poly(ε-caprolactone) nanofibers with silk nanoparticles is a promising strategy for the improvement of poly(ε-caprolactone)-based nanofibers for future tissue engineering applications.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3