Affiliation:
1. School of Mechanical Engineering, Chengdu University , Chengdu 610106 , China
2. Department of Stomatology, The Affiliated Hospital of Chengdu University , Chengdu 610081 , China
Abstract
Abstract
In this study, composite nanofiber films for the wound dressing application were prepared with silk fibroin (SF) and polycaprolactone (PCL) by electrospinning techniques, and the SF/PCL composite nanofiber films were characterized by the combined techniques of scanning electron microscopy (SEM), the equilibrium water content, Fourier transform infrared spectrometer test, X-ray diffraction (XRD) and cell viability test. The results indicated several parameters, including the rotating roller speed, solution concentration, and SF/PCL ratio, affected SF/PCL composite nanofibers’ diameter size, distribution, and wettability. The SF/PCL composite nanofiber manifested a smaller fiber diameter and more uniform nanofibers than pure PCL nanofibers. The contact angle changed from 121 ± 2° of the neat pure PCL to full wetting of 40% SF/PCL composite nanofiber films at 2,000 rpm, indicating good hydrophilicity. Meanwhile, cells exhibit adhesion and proliferation on the composite nanofiber films. These results testified that SF/PCL composite nanofiber films may provide good wettability for cell adhesion and proliferation. It was suggested that optimized SF/PCL composite nanofiber films could be used as a potential biological dressing for skin wound healing.
Subject
Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献