Thermo-triggered drug delivery from polymeric micelles of poly(N-isopropylacrylamide-co-acrylamide)-b-poly(n-butyl methacrylate) for tumor targeting

Author:

Sun Feilong12,Wang Yuxia1,Wei Yi1,Cheng Gang2,Ma Guanghui1

Affiliation:

1. National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China

2. Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning, P.R. China

Abstract

Novel temperature-sensitive micelles, possessing a core-shell structure, were successfully fabricated and evaluated as possible systems for targeting anticancer drugs to solid tumors. The amphiphilic block copolymer poly( N-isopropylacrylamide- co-acrylamide)-b-poly( n-butyl methacrylate) was used to achieve a stimuli-responsive on/off release and spatial specificity. The anticancer drug methotrexate, which is poorly water soluble, was used as the model. Fourier transform–infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, gel-permeation chromatography, and critical micelle concentration were used to evaluate the successful synthesis of block copolymers with a lower critical solution temperature ~40°C. Based on transmission electron microscope images, the micelles are spherical particles with narrow size distribution. The thermally triggered release of methotrexate was observed in vitro. Quartz crystal microbalance with dissipation was used to investigate the interactions of the polymeric micelles with bovine serum albumin, to illustrate protein adsorption and cell attachment. Cytotoxicity studies were conducted on Lewis lung carcinoma cells, and the anticancer activity of methotrexate-loaded micelles was significantly enhanced in combination with hyperthermia. The thermo-sensitive characteristics of the micelles make them applicable as smart drug delivery systems, when combined with localized hyperthermia.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3