Enzymatically cross-linked injectable gelatin gel as osteoblast delivery vehicle

Author:

Amini Ashley A1,Nair Lakshmi S23

Affiliation:

1. School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA

2. Department of Orthopaedic Surgery, Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, USA

3. Department of Chemical, Materials and Biomolecular Engineering, Biomedical Engineering Program, Institute of Material Science, University of Connecticut, Farmington, CT, USA

Abstract

Injectable and degradable hydrogels are potential candidates as cell delivery vehicles for the regeneration of osseous defects. We evaluated the potential of injectable enzymatically cross-linked gelatin gel as an osteoblast delivery vehicle using murine preosteoblast MC3T3-E1 cells. Injectable hydrogels were prepared by enzymatic cross-linking of the phenol derivatives of gelatin (tyramine-modified) in the presence of hydrogen peroxide (H2O2) and horseradish peroxidase. The effect of gelatin concentration on gel morphology and in supporting the adhesion and spreading of encapsulated MC3T3-E1 cells, activation of intercellular signaling in MC3T3-E1 cells by extracellular signal-regulated kinase phosphorylation, β-catenin and Runx2 was evaluated. Both tyramine-modified and unmodified gelatins as well as gelatin gels did not activate intercellular signaling pathways in MC3T3-E1 cells. The encapsulated cells in gelatin gel showed extracellular signal-regulated kinase phosphorylation and active β-catenin expression in the presence of inductive molecules such as insulin and LiCl. The gelatin gels formed from 10 to 25 mg/mL tyramine-modified gelatin supported the adhesion, spreading, and three-dimensional growth of MC3T3-E1 cells. However, the lack of activation of intercellular signaling in the gelatin gel indicates the need to add exogenous bioactive molecules to modulate the osteogenic functions of the encapsulated cells.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3