In situ forming gelatin: Cyclodextrin hydrogels prepared by “click chemistry” to improve the sustained release of hydrophobic drugs

Author:

Thi Phuong Le1ORCID,Tran Thi Yen Nhi2,Luu Hung Cuong1,Tran Dieu Linh1ORCID,Thi Thai Thanh Hoang1,Nguyen Dai Hai1

Affiliation:

1. Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam

2. Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

Abstract

Injectable hydrogels offer a wide range of attractive benefits in drug delivery applications, such as non-invasive administration, easy drug incorporation and locally controlled release at the target sites. Herein, we designed a simple and efficient method to prepare injectable hydrogels composed of gelatin and cyclodextrin (CD) for high loading capacity of hydrophobic drugs. The hydrogels were formed by thiol-functionalized gelatin (GSH) and βCD-vinyl sulfone (βCD-VS) as cross-linker, via thiol-ene “click” chemistry. Hydrogels comprising of different cross-linker feed amount were investigated in terms of their physico-chemical properties, such as gelation time, mechanical strength, swelling ratio, porosity and degradation rates. For the use as a drug delivery vehicle, dexamethasone (DEX), a commonly anti-inflammatory, immunosuppressive but poorly water soluble drug was chosen to show the high drug loading capacity and prolonged drug release of hydrogels. The drug release was found to be depended on the concentration of βCD-VS due to the drug-CD interaction. In vitro cytotoxicity experiment also showed the cell compatibility of these hydrogels against human dermal fibroblasts. In summary, we expect this gelatin-CD “click” hydrogel will be a promising candidate for localized and long-term delivery of hydrophobic drugs.

Funder

National Foundation for Science and Technology Development

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3