Joint Kinetics and Muscle Activity While Walking on Ballast

Author:

Wade Chip1,Redfern Mark S.2,Andres Robert O.3,Breloff Scott P.4

Affiliation:

1. Auburn University, Auburn, Alabama,

2. University of Pittsburgh, Pittsburgh, Pennsylvania

3. Ergonomic Engineering, Pelham, Massachusetts

4. University of Oregon, Eugene

Abstract

Objective: This study examined the impact of two common sizes of ballast on gait biomechanics. The terrain was designed to simulate a railroad work setting to investigate the variation in gait kinetics and muscle activation while walking. Background: Research and epidemiology suggest a potential link between walking surface characteristics and injury. However, few studies have investigated the impact of ballast surfaces, which is a surface of interest in the railroad and construction industries, on gait dynamics. Method: For this study, 20 healthy adult men walked along three distinct pathways (no ballast [NB], walking ballast [WB], and mainline ballast [MB]). WB and MB consisted of rock with an average size of 0.75 to 1 in. and 1.25 to 1.5 in., respectively. Full-body motion, ground reaction forces, and electromyographic (EMG) signals from lower extremity muscles were collected, and three dimensional joint moments were calculated. Parameters of interest were moment trajectories and ranges, EMG activity, and temporal gait measures. Results: Joint-specific differences indicate significant variations between surface conditions. Joint moment ranges were generally smaller for MB and WB compared with NB. EMG activity, in particular, co-contraction levels, was found to be significantly greater on ballast compared with NB. Temporal gait parameters were significantly different for MB than for either WB or NB. Conclusion: Walking on ballast increases muscle activation to control the moments of the lower extremity joints. Application: The results suggest that ballast has an effect on muscles and joints; thus, the findings provide insight to improve and develop new work practices and methods for injury prevention.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3