Jamming Memory into Acoustically Trained Dense Suspensions under Shear

Author:

Ong Edward Y. X.1ORCID,Barth Anna R.2,Singh Navneet2,Ramaswamy Meera2,Shetty Abhishek3,Chakraborty Bulbul4,Sethna James P.2ORCID,Cohen Itai25ORCID

Affiliation:

1. Department of Applied Engineering and Physics, Cornell University, Ithaca, New York 14850, USA

2. Department of Physics, Cornell University, Ithaca, New York 14850, USA

3. Department of Rheology, Anton Paar, Ashland, Virginia 23005, USA

4. Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA

5. Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA

Abstract

Systems driven far from equilibrium often retain structural memories of their processing history. This memory has, in some cases, been shown to dramatically alter the material response. For example, work hardening in crystalline metals can alter the hardness, yield strength, and tensile strength to prevent catastrophic failure. Whether memory of processing history can be similarly exploited in flowing systems, where significantly larger changes in structure should be possible, remains poorly understood. Here, we demonstrate a promising route to embedding such useful memories. We build on work showing that exposing a sheared dense suspension to acoustic perturbations of different power allows for dramatically tuning the sheared suspension viscosity and underlying structure. We find that, for sufficiently dense suspensions, upon removing the acoustic perturbations, the suspension shear jams with shear stress contributions from the maximum compressive and maximum extensive axes that reflect or “remember” the acoustic training. Because the contributions from these two orthogonal axes to the total shear stress are antagonistic, it is possible to tune the resulting suspension response in surprising ways. For example, we show that differently trained sheared suspensions exhibit (1) different susceptibility to the same acoustic perturbation, (2) orders of magnitude changes in their instantaneous viscosities upon shear reversal, and (3) even a shear stress that increases in magnitude upon shear cessation. We work through these examples to explain the underlying mechanisms governing each behavior. Then, to illustrate the power of this approach for controlling suspension properties, we demonstrate that flowing states well below the shear jamming threshold can be shear jammed via acoustic training. Collectively, our work paves the way for using acoustically induced memory in dense suspensions to generate rapidly and widely tunable materials. Published by the American Physical Society 2024

Funder

Cornell Center for Materials Research

National Science Foundation

Materials Research Science and Engineering Center, Harvard University

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Agency of Science Technology and Research

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3