The (Im)perfect Automation Schema: Who Is Trusted More, Automated or Human Decision Support?

Author:

Rieger Tobias1ORCID,Kugler Luisa1,Manzey Dietrich1,Roesler Eileen2ORCID

Affiliation:

1. Technische Universität Berlin, Berlin, Germany

2. George Mason University, Fairfax, VA, USA

Abstract

Objective This study’s purpose was to better understand the dynamics of trust attitude and behavior in human-agent interaction. Background Whereas past research provided evidence for a perfect automation schema, more recent research has provided contradictory evidence. Method To disentangle these conflicting findings, we conducted an online experiment using a simulated medical X-ray task. We manipulated the framing of support agents (i.e., artificial intelligence (AI) versus expert versus novice) between-subjects and failure experience (i.e., perfect support, imperfect support, back-to-perfect support) within subjects. Trust attitude and behavior as well as perceived reliability served as dependent variables. Results Trust attitude and perceived reliability were higher for the human expert than for the AI than for the human novice. Moreover, the results showed the typical pattern of trust formation, dissolution, and restoration for trust attitude and behavior as well as perceived reliability. Forgiveness after failure experience did not differ between agents. Conclusion The results strongly imply the existence of an imperfect automation schema. This illustrates the need to consider agent expertise for human-agent interaction. Application When replacing human experts with AI as support agents, the challenge of lower trust attitude towards the novel agent might arise.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3