Taking Over Control From Highly Automated Vehicles in Complex Traffic Situations

Author:

Gold Christian1,Körber Moritz1,Lechner David1,Bengler Klaus1

Affiliation:

1. Institute of Ergonomics, Technical University of Munich, Germany

Abstract

Objective: The aim of this study was to quantify the impact of traffic density and verbal tasks on takeover performance in highly automated driving. Background: In highly automated vehicles, the driver has to occasionally take over vehicle control when approaching system limits. To ensure safety, the ability of the driver to regain control of the driving task under various driving situations and different driver states needs to be quantified. Methods: Seventy-two participants experienced takeover situations requiring an evasive maneuver on a three-lane highway with varying traffic density (zero, 10, and 20 vehicles per kilometer). In a between-subjects design, half of the participants were engaged in a verbal 20-Questions Task, representing speaking on the phone while driving in a highly automated vehicle. Results: The presence of traffic in takeover situations led to longer takeover times and worse takeover quality in the form of shorter time to collision and more collisions. The 20-Questions Task did not influence takeover time but seemed to have minor effects on the takeover quality. Conclusions: For the design and evaluation of human–machine interaction in takeover situations of highly automated vehicles, the traffic state seems to play a major role, compared to the driver state, manipulated by the 20-Questions Task. Application: The present results can be used by developers of highly automated systems to appropriately design human–machine interfaces and to assess the driver’s time budget for regaining control.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 295 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3