More Is Not Always Better: Impacts of AI-Generated Confidence and Explanations in Human–Automation Interaction

Author:

Ling Shihong1ORCID,Zhang Yutong1ORCID,Du Na1ORCID

Affiliation:

1. University of Pittsburgh, USA

Abstract

Objective The study aimed to enhance transparency in autonomous systems by automatically generating and visualizing confidence and explanations and assessing their impacts on performance, trust, preference, and eye-tracking behaviors in human–automation interaction. Background System transparency is vital to maintaining appropriate levels of trust and mission success. Previous studies presented mixed results regarding the impact of displaying likelihood information and explanations, and often relied on hand-created information, limiting scalability and failing to address real-world dynamics. Method We conducted a dual-task experiment involving 42 university students who operated a simulated surveillance testbed with assistance from intelligent detectors. The study used a 2 (confidence visualization: yes vs. no) × 3 (visual explanations: none, bounding boxes, bounding boxes and keypoints) mixed design. Task performance, human trust, preference for intelligent detectors, and eye-tracking behaviors were evaluated. Results Visual explanations using bounding boxes and keypoints improved detection task performance when confidence was not displayed. Meanwhile, visual explanations enhanced trust and preference for the intelligent detector, regardless of the explanation type. Confidence visualization did not influence human trust in and preference for the intelligent detector. Moreover, both visual information slowed saccade velocities. Conclusion The study demonstrated that visual explanations could improve performance, trust, and preference in human–automation interaction without confidence visualization partially by changing the search strategies. However, excessive information might cause adverse effects. Application These findings provide guidance for the design of transparent automation, emphasizing the importance of context-appropriate and user-centered explanations to foster effective human–machine collaboration.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3