Affiliation:
1. Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Indonesia
2. Chemical Engineering Department, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Indonesia
Abstract
Background: Encapsulation is one of the methods used to trap active ingredients in the wall material of microparticles. Aim: The aim of this study was to evaluate the encapsulation of red ginger oleoresin using an emulsion crosslinking method with chitosan as the wall material. Methods: Emulsions were formed of red ginger oleoresin with chitosan in concentrations of 1%, 2%, 3%, and 4% (w/v), respectively. The emulsions were then mixed with corn oil and stirred for one hour to obtain a second set of emulsions, and glutaraldehyde saturated toluene (GST) was added dropwise in quantities of 20, 10, 6.7, and 5 ml, respectively. This was followed by the addition of 2 ml of 25% glutaraldehyde and the emulsions were stirred for two hours. The resulting microcapsules were washed with petroleum ether followed by hexane and then dried in an oven at 70oC. Results: The emulsion crosslinking method used to trap the red ginger oleoresin in chitosan produced microcapsules of good spherical geometry with the mean diameter ranging from 75.61 ± 11.8 µm to 178.65 ± 40.7 µm. The highest yield was 98.93% and encapsulation efficiency was 83.1%. Thermogravimetric and differential thermal analysis showed that the melting point was at a temperature between 120 and 130oC. Conclusion: Chitosan concentration has little effect on encapsulation yield, whereas the amount of GST tends to strengthen the crosslinking bonds of chitosan and reduces the mean diameter of microspheres.
Subject
Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献