Numerical investigation on effect of electromagnetic stirring on macrosegregation in continuously cast round bloom via three-phase solidification model

Author:

Yang Yuwei12,Liu Chao3,Luo Sen124ORCID,Wang Weiling124,Zhu Miaoyong124

Affiliation:

1. Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, Liaoning, China

2. School of Metallurgy, Northeastern University, Shenyang, Liaoning, China

3. Research Institute of Shandong Iron and Steel Group Co. Ltd, Jinan, Shandong, China

4. Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang, Liaoning, China

Abstract

Based on our previously proposed three-phase solidification model, a comprehensive analysis on the impact of the only electromagnetic stirring (EMS) and combined EMS on the microscopic structure evolution and solute segregation behavior in a 500 mm diameter 42CrMo steel of continuously cast round bloom. The results indicate that M-EMS has a notable impact on expediting the dissipation of superheat, enhancing the initiation of grain formation, and enlarging the equiaxed region. The percentage of equiaxed grains increased from 59.26 to 63.37% with the increment in current intensities of M-EMS from 250 to 350 A. However, higher M-EMS current intensities were found to enhance local positive segregation in the transition zone between columnar and equiaxed grains. The impact of M-EMS on improving center positive segregation was minimal, as the ratio of center positive segregation remained consistently around 1.17. Furthermore, the implementation of F-EMS demonstrated its effectiveness in reducing center positive segregation. The ratio of center positive segregation decreased from 1.14 to 1.10, when the current intensity increases from 150 to 250 A. However, it should be noted that F-EMS alone did not contribute to the expansion of the equiaxed zone. On the other hand, when M-EMS was combined with F-EMS (referred to as combined EMS), it showed potential in mitigating center segregation during continuous casting round blooms. The benefits observed with M-EMS in terms of promoting grain nucleation and expanding the equiaxed grain zone were also evident in this combined EMS process. Furthermore, a notable enhancement in the equiaxed grain ratio up to 60.13% was observed combined EMS models were simultaneously employed during continuous casting of round blooms. And, there was a reduction in center segregation ratio for round blooms to as low as 1.09.

Funder

Fundamental Research Funds for the Central Universities of Beijing University of Chemical Technology

National Natural Science of China

National Key Research and Development Plan

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3