Control of Shrinkage Porosity and Spot Segregation in Ø195 mm Continuously Cast Round Bloom of Oil Pipe Steel by Soft Reduction

Author:

Li LiangORCID,Zhang Zhonghua,Luo Ming,Li Bo,Lan Peng,Zhang Jiaquan

Abstract

Based on the Ø195 mm round bloom continuous casting of oil pipe steel, a two dimensional thermal-mechanical coupled model has been developed to investigate the deformation behavior of round bloom during soft reduction (SR) in the reduction force mode. Good agreement was achieved in surface temperature, shell thickness and contact zone width from modeling and measurement. Under the same reduction force, the reduction amount of round bloom at the front unit is much larger than back unit. Moreover, due to its higher temperature and lower center solid fraction, the deformation penetration before solidification is much stronger than that after solidification. Considering the limitation of the round bloom ovality, the maximum allowable force in reduction unit is calculated. According to the simulation results, a multi-unit soft reduction plan was proposed and carried out on the Ø195 mm round bloom. After the reduction process of No.1 to No.3 withdrawal units, the shrinkage porosity in the center of the round bloom was almost vanished, while the number and size of spot segregation were significantly reduced. Moreover, the oil pipe produced by the round bloom with SR got a better resistance to sulfide stress corrosion (SSC). It indicates that SR is an effective technology for the round bloom to control the shrinkage porosity and spot segregation in the continuous casting.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3