Application of Binary Searching for Item Exposure Control in Cognitive Diagnostic Computerized Adaptive Testing

Author:

Zheng Chanjin1,Wang Chun2

Affiliation:

1. Jiangxi Normal University, Nanchang, China

2. University of Minnesota, Minneapolis, MN, USA

Abstract

Cognitive diagnosis has emerged as a new generation of testing theory for educational assessment after the item response theory (IRT). One distinct feature of cognitive diagnostic models (CDMs) is that they assume the latent trait to be discrete instead of continuous as in IRT. From this perspective, cognitive diagnosis bears a close resemblance to searching problems in computer science and, similarly, item selection problem in cognitive diagnostic computerized adaptive testing (CD-CAT) can be considered as a dynamic searching problem. Previously, item selection algorithms in CD-CAT were developed from information indices in information science and attempted to achieve a balance among several objectives by assigning different weights. As a result, they suffered from low efficiency from a tug-of-war competition among multiple goals in item selection and, at the same time, put an undue responsibility of assigning the weights for these goals by trial and error on users. Based on the searching problem perspective on CD-CAT, this article adapts the binary searching algorithm, one of the most well-known searching algorithms in searching problems, to item selection in CD-CAT. The two new methods, the stratified dynamic binary searching (SDBS) algorithm for fixed-length CD-CAT and the dynamic binary searching (DBS) algorithm for variable-length CD-CAT, can achieve multiple goals without any of the aforementioned issues. The simulation studies indicate their performances are comparable or superior to the previous methods.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3