Harder and Stiffer Bone Osseointegrated to Roughened Titanium

Author:

Butz F.1,Aita H.1,Wang C.J.1,Ogawa T.1

Affiliation:

1. The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue (B3-087 CHS), Box 951668, Los Angeles, CA 90095-1668, USA

Abstract

Mechanisms underlying the beneficial anchorage of roughened titanium implants have not been identified. We hypothesized that the implant surface roughness alters intrinsic biomechanical properties of bone integrated to titanium. Nano-indentation performed on two- and four-week post-implantation bone specimens of rats revealed that bone integrated to acid-etched titanium was approximately 3 times harder than that integrated to the machined titanium, both at the osseointegration interface and at the inner area of the peri-implant bone. The hardness of the acid-etched surface-associated bone was equivalent to that of untreated cortical bone at week 4, while the bone hardness around the machined surface was equivalent to that of the untreated trabecular bone. The elastic modulus of the integrated bone was 1.5 to 2.5 times greater around the acid-etched surface than around the machined surface. Analysis of the data suggests that the implant surface roughness affects the biomechanical quality of osseo-integrated bone, and that the bone integrated to the acid-etched surface is harder and stiffer than the bone integrated to the machined surface.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3