Organ-specific effects on inflammation and apoptosis of recombinant human activated protein C in a murine model of sepsis

Author:

Simon Tim-Philipp1,Mueckenheim Hendrik1,Wagner Tobias2,Sponholz Christoph2,Claus Ralf Alexander2,Saenger Joerg3,Marx Gernot1,Schuerholz Tobias4

Affiliation:

1. Department of Intensive Care and Intermediate Care, University Hospital Aachen, RWTH Aachen University, Aachen, Germany

2. Department of Anesthesiology and Intensive Care, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany

3. Institute of Pathology, Bad Berka, Germany

4. Department of Anesthesiology and Intensive Care, University of Rostock, Rostock, Germany

Abstract

There is legitimate interest in the effects of recombinant human activated protein C (rhAPC) on various organs and individual patients, but the specific effects on organ tissues during early sepsis remain unknown. Differences in the levels of organ damage may influence responses to drug therapy. We aimed to investigate whether rhAPC induces organ-specific effects on inflammation and apoptosis using randomized, experimental trials with male NMRI mice. Animals underwent caecal ligation and puncture, and after 12 h, sepsis inflammation and apoptosis were assessed by plasma cytokines, gene expression ratios and immunohistochemistry (IHC). RhAPC-treated animals exhibited increased physical activity and decreased cytokine release compared to untreated animals (interleukin-6 reduction 58%, P < 0.001). CD14 expression was higher in the heart and liver and decreased upon rhAPC application in the heart (−35%), liver and kidney (both −60%). Macrophage inflammatory protein 2 (MIP2) expression decreased in the heart (−58%) but not in the liver or kidney. IHC revealed decreased cleaved caspase-3 in the heart and kidney due to rhAPC intervention. Preservation of the endothelial PC receptor was significant only in the heart during sepsis ( P = 0.007). In early polymicrobial sepsis, inflammation was more pronounced in the heart and liver compared to the kidney. RhAPC exhibited protective effects, especially in the heart tissue, and led to reduced plasma levels of pro-inflammatory cytokines and improved physical activity.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3