Identification and Characterisation of Putative Enhancer Elements in Mouse Embryonic Stem Cells

Author:

Mantsoki Anna1,Parussel Karla1,Joshi Anagha2ORCID

Affiliation:

1. Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Midlothian, UK

2. Computational Biology Unit, Department of Clinical Science, University of Bergen, Bergen, Norway

Abstract

Enhancer elements control mammalian transcription largely in a cell-type-specific manner. The genome-wide identification of enhancer elements and their activity status in a cellular context is therefore fundamental to understanding cell identity and function. We determined enhancer activity in mouse embryonic stem (ES) cells using chromatin modifications and characterised their global properties. Specifically, we first grouped enhancers into 5 groups using multiple H3K4me1, H3K27ac, and H3K27me3 modification data sets. Active enhancers (simultaneous presence of H3K4me1 and H3K27ac) were enriched for binding of pluripotency factors and were found near pluripotency-related genes. Although both H3K4me1-only and active enhancers were enriched for super-enhancers and a TATA box like motif, active enhancers were preferentially bound by RNA polII (s2) and were enriched for bidirectional transcription, while H3K4me1-only enhancers were enriched for RNA polII (8WG16) suggesting they were likely poised. Bivalent enhancers (simultaneous presence of H3K4me1 and H3K27me3) were preferentially in the vicinity of bivalent genes. They were enriched for binding of components of polycomb complex as well as Tcf3 and Oct4. Moreover, a ‘CTTTCTC’ de-novo motif was enriched at bivalent enhancers, previously identified at bivalent promoters in ES cells. Taken together, 3 histone modifications successfully demarcated active, bivalent, and poised enhancers with distinct sequence and binding features.

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3