Computer-aided diagnosis for breast cancer detection and classification using optimal region growing segmentation with MobileNet model

Author:

Dafni Rose J1,VijayaKumar K1ORCID,Singh Laxman2ORCID,Sharma Sudhir Kumar3

Affiliation:

1. St Joseph's Institute of Technology, Chennai, India

2. Noida Institute of Engineering and Technology, Greater Noida, New Delhi

3. Institute of Information Technology and Management, New Delhi, New Delhi

Abstract

Globally, breast cancer is considered a major reason for women’s morality. Earlier and accurate identification of breast cancer is essential to increase survival rates. Therefore, computer-aided diagnosis (CAD) models are developed to help radiologists in the detection of mammographic lesions. Presently, machine-learning (ML) and deep-learning (DL) models are widely employed in the disease diagnostic process. In this view, this paper designs a novel CAD using optimal region growing segmentation with a MobileNet (CAD-ORGSMN) model for breast cancer identification and classification. The proposed CAD-ORGSMN model involves different stages of operations, namely, pre-processing, segmentation, feature extraction, and classification. Primarily, the proposed model uses a Weiner filtering (WF)–based pre-processing technique to remove the existence of noise in the mammogram images. The CAD-ORGSMN model involves a glowworm swarm optimization (GSO)–based region growing technique for image segmentation where the initial seed points and threshold values are optimally created by the GSO algorithm. Besides, a MobileNet-based feature extractor is used in which the hyperparameters of the MobileNet model are optimally selected using a swallow swarm optimization (SSO) algorithm. Lastly, variational autoencoder is applied as a classifier to determine the class labels for the input mammogram images. The utilization of the GSO algorithm for the region growing technique and the SSO algorithm for hyperparameter optimization helps to considerably improve the breast cancer detection performance of the CAD-ORGSMN model. The performance validation of the CAD-ORGSMN model takes place against the Mini-MIAS database, and the obtained results highlighted the promising performance of the CAD-ORGSMN model over the recent state-of-the-art methods in terms of different measures.

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Optimization System for Early Breast Cancer Diagnosis based on Internet of Medical Things and Deep Learning;Engineering, Technology & Applied Science Research;2024-08-02

2. Breast Cancer Detection in Mammography using Faster Region Convolutional Neural Networks and Group Convolution;IETE Journal of Research;2024-05-14

3. A Novel Approach for Detecting Breast Cancer Cells and Comparison using DeepLearning Techniques;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

4. Segmentation of Breast Cancer from Mammogram Images using Fuzzy Clustering Approach;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

5. Application of Machine Learning Algorithms for Customer Segmentation in E-Commerce Management;2024 International Conference on Science Technology Engineering and Management (ICSTEM);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3