An Interval-based Constraint Satisfaction (IBCS) Method for Decentralized, Collaborative Multifunctional Design

Author:

Panchal Jitesh H.1,Gero Fernández Marco1,Paredis Christiaan J. J.1,Allen Janet K.1,Mistree Farrokh2

Affiliation:

1. Systems Realization Laboratory, Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, GA 30322, USA

2. Systems Realization Laboratory, Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, GA 30322, USA,

Abstract

Set-based design has been proposed as a strategy for multifunctional design problems where stakeholders from different disciplines strive to achieve domain-specific objectives while sharing a set of design variables. This strategy involves communicating information about sets of alternatives in contrast to communicating information about a single alternative at a time. The strategy has been developed for collaborative CAD and for selection among design alternatives during conceptual design, it has not been implemented as a computational method for decentralized collaborative multi-objective design problems. In this article, we address this research gap by presenting an Interval-Based Constraint Satisfaction (IBCS) Method for decentralized, collaborative multifunctional design. The method is based on transforming a decentralized multifunctional design problem into a constraint satisfaction problem by using non-cooperative game theoretic protocols. The resulting constraint satisfaction problem is then solved using interval-based consistency techniques. A non-cooperative game theory protocol is utilized in this method because it reflects the level of information exchange possible in a distributed environment. Central to this protocol is the representation of a Rational Reaction Set (RRS) that encapsulates a designer's decision-making strategy as a constraint in the design space. An intersection of all designers' RRSs represents a solution to the overall multifunctional design problem. We use interval-based consistency techniques, specifically box consistency, to sequentially eliminate regions of design space that do not satisfy the individual RRSs, thereby progressively narrowing the design space in order to reduce computational complexity in arriving at a solution. This method stands in marked contrast to the successive consideration of single solution points, as emphasized in existing multifunctional design methods. The key advantages of the proposed method are: (a) gradual reduction of design freedom and (b) non-divergence of solutions. The method is illustrated using two sample scenarios — the solution of a decision problem with quadratic objectives and the design of multifunctional Linear Cellular Alloys (LCAs).

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modelling and Simulation

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3