Concurrent Engineering and Design Oscillations in Complex Engineering Projects

Author:

Loch Christoph1,Mihm Jürgen2,Huchzermeier Arnd2

Affiliation:

1. INSEAD, Boulevard de Constance, 77305 Fontainebleau, France,

2. INSEAD, Boulevard de Constance, 77305 Fontainebleau, France

Abstract

Coordination among many interdependent actors is key activity in complex product development projects. The challenge is made more difficult in concurrent engineering processes, as more activities happen in parallel and interact. This coordination becomes progressively more difficult with project size. We do not yet sufficiently understand whether this effect can be controlled with frequent and rich communication among project members, or whether it is inevitable. Recent work in complexity theory suggests that a project might form a “rugged landscape”, for which performance deterioration with system size is inevitable. This article builds a mathematical model of a complex concurrent design project. The model explicitly represents local component decisions, as well as component interactions in determining system performance. The model shows, first, how a rugged performance landscape arises from simple components with single-peaked performance functions, if the components are interdependent. Second, we characterize the dynamic behavior of the system analytically and with simulations. We show under which circumstances it exhibits performance oscillations or divergence to design solutions with low performance. Third, we derive classes of managerial actions available to improve performance dynamics, such as limiting the “effective” system size of fully interdependent components, modularity, and cooperation among designers. We also show how “satisficing”, or a willingness to forego the last few percent of optimization at the component level, may yield a disproportionally large improvement in the design completion time.

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3