Requirements, Objectives, Both, or Neither: How to Formulate Complex Design Problems for Innovation Contests

Author:

Vrolijk Ademir-Paolo1,Szajnfarber Zoe1

Affiliation:

1. The George Washington University Department of Engineering Management and Systems Engineering, , Washington, DC 20052

Abstract

Abstract Technical organizations increasingly rely on innovation contests to find novel ideas for designing complex systems. These activities involve outsiders in the early stages of the design process, leading to ground-breaking designs that often surpass expectations. Here, the contest’s rules document plays a crucial role: this design artifact communicates the organization’s problem and the desired system performance to the participants—significantly impacting the resulting solutions. However, the contest’s nature amplifies the challenges of communicating complex design problems across boundaries. Existing strategies for formulating—i.e., requirement and objective allocation—might not suit this context. We developed an inductive model of their formulation process based on a multiyear field study of five complex innovation contests. We found that a formulation team (or “seeker”) balanced the need to communicate their problem in detail with the risk of excluding valuable participants. Here, they chose among three approaches—incentivize, impose, or subsume—depending on their knowledge of potential solutions and the participants’ capabilities. Notably, the seeker formulated more granularly than the literature describes, employing multiple approaches within each rules document. These findings shed light on a poorly understood aspect of innovation contests, shed new light on a longstanding debate in the engineering design literature, and guide practitioners’ formulation processes.

Funder

National Aeronautics and Space Administration

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3