Phased array ultrasonic test signal enhancement and classification using Empirical Wavelet Transform and Deep Convolution Neural Network

Author:

JC Jayasudha1ORCID,S Lalithakumari

Affiliation:

1. Faculty of Electronics, Sathyabama Institute of Science and Technology, Chennai, India

Abstract

In the recent past, Non-Destructive Testing (NDT) has become the most popular technique due to its efficiency and accuracy without destroying the object and maintaining its original structure and gathering while examining external and internal welding defects. Generally, the NDT environment is harmful which is distinguished by huge volatile fields of electromagnetic, elevated radiation emission instability, and elevated heat. Therefore, a suitable NDT approach could be recognized and practiced. In this paper, a novel algorithm is proposed based on a Phased array ultrasonic test (PAUT) for NDT to attain the proper test attributes. In the proposed methodology, the carbon steel welding section is synthetically produced with various defects and tested using the PAUT method. The signals which are acquired from the PAUT device are having noise. The Adaptive Least Mean Square (ALMS) filter is proposed to filter PAUT signal to eliminate random noise and Gaussian noise. The ALMS filter is the combination of low pass filter (LPF), high pass filter (HPF), and bandpass filter (BPF). The time-domain PAUT signal is converted into a frequency-domain signal to extract more features by applying the Empirical Wavelet Transform (EWT) algorithm. In the frequency domain signal, first order and second order features extraction techniques are applied to extract various features for further classification. The Deep Learning methodology is proposed for the classification of PAUT signals. Based on the PAUT signal features, the Deep Convolution Neural Network (DCNN) is applied for further classification. The DCNN will classify the welding signal as to whether it is defective or non-defective. The Confusion Matrix (CM) is used for the estimation of measurement of performance of classification as calculating accuracy, sensitivity, and specificity. The experiments prove that the proposed methodology for PAUT testing for welding defect classification is obtained more accurately and efficiently across existing methodologies by providing numerical and graphical results.

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3